k-Diophantine m-tuples in finite fields
نویسندگان
چکیده
In this paper, we define a [Formula: see text]-Diophantine text]-tuple to be set of text] positive integers such that the product any distinct is one less than perfect square. We study these sets in finite fields for odd prime and guarantee existence provided larger some explicit lower bound. also give formula number 3-Diophantine triples as well an asymptotic text]-tuples.
منابع مشابه
Diophantine m-tuples for primes
In this paper, we show that if p is a prime and ifA = {a1, a2, . . . , am} is a set of positive integers with the property that aiaj +p is a perfect square for all 1 ≤ i < j ≤ m, then m < 3 · 2168. More generally, when p is replaced by a squarefree integer n, the inequality m ≤ f(ω(n)) holds with some function f , where ω(n) is the number of prime divisors of n. We also give upper bounds for m ...
متن کاملDiophantine m-tuples for linear polynomials
In this paper, we prove that there does not exist a set with more than 26 polynomials with integer coefficients, such that the product of any two of them plus a linear polynomial is a square of a polynomial with integer coefficients. 1991 Mathematics Subject Classification: 11D09.
متن کاملOn the size of Diophantine m-tuples
Let n be a nonzero integer. A set of m positive integers {a1, a2, . . . , am} is said to have the property D(n) if aiaj + n is a perfect square for all 1 ≤ i < j ≤ m. Such a set is called a Diophantine m-tuple (with the property D(n)), or Pn-set of size m. Diophantus found the quadruple {1, 33, 68, 105} with the property D(256). The first Diophantine quadruple with the property D(1), the set {1...
متن کاملDiophantine m-tuples for quadratic polynomials
In this paper, we prove that there does not exist a set with more than 98 nonzero polynomials in Z[X], such that the product of any two of them plus a quadratic polynomial n is a square of a polynomial from Z[X] (we exclude the possibility that all elements of such set are constant multiples of a linear polynomial p ∈ Z[X] such that p2|n). Specially, we prove that if such a set contains only po...
متن کاملOn the number of Diophantine m-tuples
A set of m positive integers is called a Diophantine m-tuple if the product of any two of them is one less than a perfect square. It is known that there does not exist a Diophantine sextuple and that there are only finitely many Diophantine quintuples. On the other hand, there are infinitely many Diophantine m-tuples for m = 2, 3 and 4. In this paper, we derive asymptotic extimates for the numb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2022
ISSN: ['1793-7310', '1793-0421']
DOI: https://doi.org/10.1142/s1793042123500458